
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2006246 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1689

TOWARDS BENCHMARKING A VIRTUAL

SCAFFOLD
What it Should Be, Can, Cannot be

B Nagarajan

Assistant Professor

Department of Computer Applications,

Arunai Engineering College, Tiruvannamalai, India.

Abstract: Cloud computing is becoming vogue among the business firms. The reason behind is - its availability of services over

internet anywhere, anytime. Cloud Benchmarking is nothing but fixing standards while developing Multi-Tenant SaaS application,

which will result in better and amicable solution for the end- user. Virtualization is an important entity for Cloud based services. The

virtual scaffold is virtualized platform to develop Multi-Tenant Software as a Service (SaaS) application. Cloud Pattern is a reusable

component which can used in the Virtual Scaffold to develop applications. Benchmarks for Cloud based SaaS application is still

involute. This paper proposes a virtual architecture and provides a Pattern for pragmatic implementation of benchmark solution. The

aspects discussed in this paper will enlighten the sceptics and researchers to thoroughly understand a set of quantifiers essential to

implement the virtual architecture in the seclude tenant perspective and will motivate in tweaking the SaaS applications.

IndexTerms -. Benchmark, Cloud, Cloud Pattern, Multi-Tenant Applications, Virtual Scaffold

I. INTRODUCTION

Benchmarking is defined as a methodology of setting standards to execute a Cloud application and helps the researcher to quantify

the results using metrics [3]. The motivation behind this paper is to propose a reasonable benchmark framework, what it should be.

This will help the researchers and sceptics, a pragmatic implementation of the System under Test (SuT) and according to the proposed

benchmark framework during their implementation. Cloud is based on the virtualization and it provides essential services such as

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) to the global tenant who login into

the system and now a days Cloud has redefined as Everything (X) as a Services (XaaS) [1].

The essential characteristics of the Cloud include on- demand self-service, broad network access, rapid elasticity, measured usage

and resource pooling [10]. The resource pooling (or multi-tenancy) is the important characteristic included by the National Institute

of Science and Technology (NIST) becoming more popular among the researcher [19]. The Multi-Tenant application helps the tenant

to share a single resource and view a discrete view of the resources. Tenant are group of users sharing the same discrete view of a

single resource. Thus, the multiple tenant can develop their own SaaS applications using a single shared resource. These Multi-tenant

SaaS applications are useful and can be implemented for various groups of people such as medicine, finance, governance, banking

and so on. The Multi-tenant applications can be deployed as community Cloud for the usage of end user. To tweak these SaaS

applications according to the need of the organization and multiple tenant - a virtual architecture and its relevant benchmark of

acceptable parameters is essential.

Virtual scaffold is an architectural framework in which the programmer can specify how their application and database can be

interoperable [21]. Scaffold has a set of layers and each layer has set of specific function. This paper elaborately discuss about setting

standards for every layer in the scaffold and thus help the tenant to login into the system, develop and implement their Cloud

applications and thus mitigation the vulnerability of tenant during the failover.

Patterns is a reusable and implementation component specific to a virtual scaffold [22]. Thus standard can be set to quantify

component during SaaS implementation and thus provide a lucid software development at every stage. The proper implementation

of benchmark framework will help to provide better solution to SaaS application both in the tenant and organizational perspective.

The benchmarking plays a major role in the software engineering [3]. It helps the Cloud application developer to checklist with

various architectural and software requirement to be included for tweaking the SaaS application. Based on the checklist requirement

available from the feasibility study and benchmarking, the framework for System under Test (SUT) can be finalized. The SUT will

include a detailed study of software and hardware requirements. This will help the developers to quantify the SUT with suitable

metrics and construe the results. The SUT can be periodically improved suitably to obtain better performance [9].

In this paper, section two studies on the various literatures related to the benchmarking. The section three elaborately discuss

about the framework for the benchmarking. Section 4 propose a SuT and a pragmatic benchmark Pattern for implementation of SaaS

application. Section 5 discuss about experimental setup and pragmatic solution for SuT. The last section provides an epilogue with

future scope of work to be carried out.

II. STUDY ON RELATED LITERATURES

Benchmarking is still elusive and subtle among the researcher. The study on benchmarking consist of two folds. The first fold

studied on basics of benchmarking and its ways of implementing them into Cloud architectural Pattern.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2006246 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1690

Folkerts E., et al., [2012] have exhaustively studied on benchmarking practice prevailing over the years and in his work. The

author have presented a general requirements for writing a benchmark for Cloud based implementation. They provide sufficient

information about SuT and its ways of implementation which was extremely useful. The author concluded about the ways of building

and running a benchmark in a lucid manner using a case study.

Bermbach D., [2017] gave detailed note on the general requirement to be followed by the researcher while implementing

benchmarking into a Cloud based environment. Conflicts are common while implementing such systems and authors have illustrated

a detailed study on the ways of resolving on those conflicts. This paper was extremely useful while implementing benchmarking.

The second fold is to study on the readymade tools available for accessing the performance of Cloud based implementation. There

are number of readymade tools available namely CloudCmp, HI Bench, Yahoo! Cloud Service Benchmarking (YCSB) and

Transaction Processing performance Council (TPC). This study on literatures related to all of the above readymade tools are useful

for this work.

The TPC was setup in year 1988 and released user manual with periodic revision for implementing and evaluating the performance

of the SuT based on the relational databases. The council revised TPC in 2013 and published TPC – Virtual Measurement Single

(VMS) with inclusion of evaluating the Cloud based SuT and TPC-E in 2015, which handled traditional data model using OLTP

[Smith W D et al., 2013 and TPC BENCHMARK ™ E 2015].

Cooper B F et al., [2010] has contributed a detailed study on the YCSB and was extended by Patil S., et al., [2011] as YCSB++

with additional advanced features to handle NoSQL data model. Both the authors have provided techniques to handle the OLTP using

Cloud data sets. Cooper B F., et al., [2010] have provided a compendium for the researchers to understand YCSB architecture and

its ways and means of implementing benchmarking and evaluating datasets.

The elaborate study on the existing literatures have concluded that only a scant authors have implemented a SuT and experimented

them with either Structured Query Language (SQL) or Not-only SQL (NoSQL) data model. The results were based on On-Line

Analytical Processing (OLAP) with meagre datasets. Thus, selecting a proper data model which handles huge data sets in a Cloud

based virtual environment which uses both SQL and NoSQL data under single SuT is a challenge and scant researcher have proposed

a benchmark framework to construct and implement SuT and manipulate the data.

III. FRAMEWORK FOR SYSTEM UNDER TEST

3.1. Problem Statement

In Multi-Tenant SaaS application, end user may be from any corner of the globe. Hence a system has to be developed for seclude

tenant to login from a dashboard (as View). The resource R (or database) is to be stored in a virtual container a “silo” location. The

business logic should be provided to support those resource R with an authenticated user. Manipulate shared resource R using Create

Read Update Delete (CRUD) operations. To summarize the system is to be developed as Model View Controller (MVC) and an

appropriate benchmark requirements has to be framed according to satisfy the needs in the seclude tenant.

3.2. Key Requirements for Benchmarking

 The task of a benchmarking is to report how well a system performs with respect to the augmented priority under a given constraint

[3, 9]. The key requirements provides an overall requirements to be satisfied while developing Multi-Tenant SaaS applications.

3.2.1. General Requirements

 Strong target audience discuss about the size of audience who are in need of information

 Relevant to measure the performance of the typical operations. The problem definition and required

result should be relevant and should satisfy given constraints

 Economical while implementing the solution. The cost of implementing the solution should be

affordable by everyone who implement the solution

 Simple to understand the constraints and implement. The solution should be in lucid manner and ease

of use for the users

3.2.2. Implementation Requirements

 Fair and Portable articulate that everyone should participate equally while implementing a solution

 Repeatable is an ability to rerun the process to obtain the same solution

 Realistic and Comprehensive indicates that the audience implements SuT for any sort of problems and get a

solution out of it

 Configurable means the SuT should be provide flexibility to customize the solution according to the needs of

the audience

3.2.3. Workload Requirements

 Representativeness is very important among the workload. The audience should be able to interact with the

workload and adjust them according to the requirements

 Scalable is another important feature which means either vertical or horizontal scalability of software and

hardware up-gradation according to the present need of the audience

 Metrics should be a meaningful and understandable and it reports the reaction of the SuT after implementation

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2006246 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1691

The above requirements provides a general benchmark for the problem statement and it should be particularized for the Virtual

Scaffold.

3.3. Benchmark Requirements for SuT

 The next step is to chalk out benchmark indices based on the key requirements and grouping those requirements with respect to

enhancing a virtual scaffold into a SuT as general, implementation and workload. This will help to provide a framework for

implementing the Multi-Tenant SaaS applications

3.3.1. General Requirement for SuT

 The target audience for this proposed work were the tenants login into the system

 The target audience were working based on the scaffold Pattern language implementation

 The Multi-Tenant Component Gateway Pattern (MTCG) reduces the cost of implement and thus economical,

which results with better solution

 The layers associated with SuT are very simple to understand and implement

3.3.2. Implementation Requirement

 The layer associated with the SuT are rational and portable and has its own purpose

 The scaffold Pattern formulation is repeatable in the SuT and same results were obtained for given set of

constraints

 The SuT is implemented for any type of realistic and comprehensive solution related to the SaaS application

development.

 The tenant customizes their solution using the SuT

3.3.3. Workload Requirement

 The dataset with different workloads is fed as input into the SuT and produce a report accordingly

 SuT is scalable time to time based on requirements

 A meaningful metrics to report the system performance is used and performance of the system is measured

 Based on the above indices, the first step is to chalk out the general requirements for a SuT and then move on into

implementation and workload requirements. The final outcome of any benchmarking solution is to present an efficient

and effective feasible solution in a given domain.

IV. SYSTEM UNDER TEST (SUT)

The general requirements to develop virtual scaffold into a SuT should include four aspects namely

 A seclude tenant login into the system is the target audience for this proposed contrivance

 The tenants were working based on the scaffold Pattern formulation

 The MTCG Pattern reduces the cost of implementation and economical to get results

 The layers associated with SuT should be very simple to understand and implement

The necessity for the enhancement of Virtual Scaffold as SuT include

 To devise a viable SuT. The distributed application are developed as a web service which has to

provide realistic interoperability among various layers and satisfy the needs of global tenants

 Study on Pattern format creates positive motivation to enhance virtual scaffold based on MVC and

thus to provide a rational congregation among various Patterns discussed in MTCG Pattern

 The study on scaffold Pattern language clarify that the Command Query Responsibility Segregation

(CQRS) Pattern is used to perform CRUD operations on huge data set in CLOUD environment where

the data set comprises of any formats such as XML, JSON, BSON and so on

To satisfy these necessities, System under Test (SuT) has to be implemented which accepts varied data formats. The

Pattern formulation is formalized for the SuT and is implemented.as web service which accepts global tenants and provide

them a solution.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2006246 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1692

4.1. Framework for SuT

 The enhanced virtual scaffold (otherwise SuT) is a composite assemblage of

SaaS, IaaS and PaaS and is based on MVC Pattern (Figure 1) which uses RESTful

web service and performs OLTP operations on CLOUD. The motivation and

necessity for using the MVC Pattern into this enhancement is to provide a smooth

flow of information among the global tenants login into the system and to

maintain a workload balance among the tenants. MVC motivates interoperability

between the various layers and thus the tenant manager implements access control

efficiently during authentication and authorization of a tenant via a single

customized UI (or View). The tenant uses single UI as Controller to write business

logic to manipulate their data and on the flip side uses the single customized UI

to update their data of varied formats into the Model and thus a smooth flow of

information among the global tenant login into the system is maintained.
Figure 1. Model View Controller (MVC)

In MVC, the Model is the place where the tenant stores

/retrieves/updates their data. The seclude tenant writes

their business logic in the Controller to manipulate these

data through the single secluded isolated View.

In enhanced virtual Scaffold (Figure 2), Tenant self-

service layer acts as View. The business layer acts as a

Controller where seclude tenant write their snippet code

or business logic for invocating the resource R and

metadata layer will have (or hold) the data dictionary. The

storage layer (or otherwise Model) stores the resultant

solutions in varied formats. The Enhanced Virtual

Scaffold based on the MVC is illustrated in Figure 2.

4.2. Design for Scaffold Pattern Language

 The Pattern format for the virtual scaffold is

implemented using a suitable Pattern database language.

The scaffold Pattern language concentrates on the

business layer of the virtual scaffold and provisions a

suitable back-end database and encapsulate them with the

application during the Multi- Tenant aware application Figure 2. Enhanced Virtual Scaffold (SuT)

development. CQRS Pattern is applied in a scaffold to perform CRUD operation. This Pattern segregates the operation that read

data (Queries) and the operation that update data (command) by using separate interfaces. Thus the Pattern states there should be

complete separation between “command” methods that performs action and “query” method that returns data. This implies that the

data models were collaborated with other Pattern to provide results in the scaffold [22].

4.3. Workflow for CQRS

 A Snippet code for Tenant identification using CQS was as follows

Public class Tenantdatastore {

 // Query method

Public tenant Gettenant1 (int TID) {

 // query data storage for specific tenant by TID

 // return tenant

 // command Method

Public void Insert (tenant TID)

 // Insert tenant into data storage

}

Public void updatename (int id, stirng name) {

 // find tenant in the data storage by TID

 // Update the datebase

}

}
 Figure 3. Workflow in CQRS Design Pattern

 Event sourcing Pattern use an append-only store to record the full series of event that describe the history of actions taken on

data. This Patterns were applied through the Mongo DB. Sharding Pattern is used to divide a data store into a set of horizontal

partition. In Mongo DB, a driver is provided through which the tenant accesses their data. Config in the network layer of the

scaffold segregates the command and query run by the tenant. The data layer shards using STSI data model instance through the

query router. Thus, Sharding is used by the tenant with shared component where the data is stored across number of machines as

either XML or JSON document format [22].

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2006246 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1693

V. IMPLEMENTATION OF SUT

5.1. Main Idea for Writing Contrivance

 The implementation of benchmark solution concentrates following indices

 The layer associated with the SuT are rational and portable and has its own purpose

 The scaffold Pattern formulation is repeatable in the SuT and same results is obtained for given set of constraints

 The SuT is implemented for any type of realistic and comprehensive solution related to the SaaS application

development

o The tenant can customize their solution using the SuT

 Based on the indices specified for the implementation requirements, a main idea for the contrivance was conceived. The scaffold

formulation is applied and the result is repeatable with realistic and comprehensive pragmatic solution.

5.2. Experimental Setup

Figure 4. Experimental Setup

 The experiment Setup was based on the benchmarks for contrivance discussed earlier and the software used in this setup were

open source software. The tenant login into the system as either shared, isolated or dedicated component.

 The Apache Zookeeper will coordinate these tenants and authenticate them with Tenant ID. The Config will provide

centralized configuration management and can create Znode of category either as persistence, ephemeral or sequential.

The persistence Znode is alive even after the tenant was disconnected. The ephemeral Znode are active until the tenant

is live. Sequential Zone was combination of both nodes. The sessions with session ID will be created once the Znode

was created and heartbeat were sent in particular interval to ascertain whether the tenants are alive.

 The Apache Kafka is a distributed publish – subscribe messaging system and can handle a high volume of data and

enable the tenant to pass messages from one end- point to another. The Ensemble was a Zookeeper servers with a

minimum nodes of 3 to maximum ‘n’ nodes which fetches the data sets either SQL or NoSQL data model for processing.

The enhanced virtual scaffold is used as the system model

for this experiment in both cases of existing and proposed

new system. The MTCG pattern format formalized is used

as reference for conducting experiments.

5.3. Pragmatic Solution

 This research uses ActiveX Data Object (ADO).NET to

provide data access using .NET Framework. The driver

provided in the shard will helps to interoperate with any

language to write business logic in application layer. This

work is implemented as Representational State Transfer

(RESTful) web services.

 The benchmark solution for the virtual scaffold is

implemented as a pragmatic solution which accepts both for

SQL and NoSQL datasets. The tenant login into the system

has to register themselves into the tenant registration and

login using a login screen The Figure 5 is used as Dashboard

(or view) where the tenant can register themselves. The

authentication of the tenant can be done using Figure 6. Figure 5. Tenant Dashboard

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2006246 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1694

 The genesis of this work is because of the development in the

Service Oriented Architecture and its specific advantages in variety

of social groups such as medicine, engineering, biotechnology,

governance, banking, education and much more.

 In present scenario, the services were redefined as online,

location independent utility which is gearing up its impetus to

support and satisfy the needs of all walks of people in their day to

day activities which reduces the upfront cost of maintaining their

hardware and software. The services were provided through a

Virtual Private Network (VPN) authenticating the stakeholders.

This benchmark solution will cater the needs of the sceptic and

researchers and provoke a right path for the SaaS application

development.

VI. CONCLUSION

CLOUD based application development is gearing its impetus.

Virtual scaffold is a virtualized environment, where the SaaS

application can be developed and delivered. Figure 6. Login and Authentication

This paper elaborately discussed about the benchmarking factors and requirement to be considered while developing the

Multi-Tenant SaaS application. The future implementation include a Docker and crowdsourcing and improve the solution

and storage of the resultant solution.

REFERENCES

 [1]Bansode, S. M (2015). Mitigating Cloud Virtualization Vulnerabilities. International Journal of Recent Advances in Engineering

and Technology [pp.2347-2812], ISSN [online].

[2] Betts, D., Homer, A., Jezierski, A., Narumoto, M., & Zhang, H. (2013). Developing Multi-tenant Applications for the Cloud on

Windows Azure.3rd Edition, Microsoft Press.

[3] Berbatch D et al., (2017) Cloud Service Benchmarking. Springer International Publishing AG [pp.37-45].

[4] Bermbach, D., Wittern, E., & Tai, S. (2017). Cloud Service Benchmarking: Measuring Quality of Cloud Services from a Client

Perspective. Springer.

[5] Bezemer, C. P., & Zaidman, A. (2010). Multi-tenant SaaS applications: Maintenance dream or nightmare?

Proceedings of the Joint ERCIM Workshop on Software Evolution [EVOL] and International Workshop on Principles of

Software Evolution [IWPSE] [pp. 88-92]. ACM.

[6] Binnig, C., Kossmann, D., Kraska, T., & Loesing, S. (2009). How is the weather tomorrow? Towards a benchmark for the cloud.

Proceedings of the Second International Workshop on Testing Database Systems [p. 9]. ACM.

[7] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010). Benchmarking cloud serving systems with YCSB.

Proceedings of the 1st ACM symposium on Cloud computing [pp. 143-154]. ACM.

[8] Fehling, C., Leymann, F., Retter, R., Schumm, D., & Schupeck, W. (2011). An architectural pattern language of cloud-based

applications. Proceedings of the 18th Conference on Pattern Languages of Programs [p. 2]. ACM.

[9] Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., Markl, V., & Tosun, C. (2012). Benchmarking in the Cloud: What It Should,

Can, and Cannot Be. In TPCTC (pp. 173-188).

[10]Garg, T., Kumar, R., & Singh, J. (2013). A way to cloud computing basic to multitenant environment. International Journal of

Advanced Research in Computer and Communication Engineering [pp.2394-2399], Volume 2, Number 6.

[11] Jacobs, D., Aulbach, S. (2007). Ruminations on Multi- Tenant Databases. In BTW Vol. 103, [pp. 514-521].

[12]Krebs, R., Momm, C., & Kounev, S. (2014). Metrics and techniques for quantifying performance isolation in cloud

environments. Science of Computer Programming, 90, [pp. 116-134].

[13]Koziolek H., (2010). Towards an architectural style for Multi-Tenant software applications. Proceedings Software Engineering

(SE’10) [pp.200-209]. Volume 159 of LNI, GI,

[14]Koziolek, H., (2011). The SPOSAD architectural style for multi-tenant software applications. ConferenceProceedings of

Software Architecture (WICSA), 2011, 9th Working IEEE/IFIP [pp. 320-327]. IEEE.

[15]Leavitt, N. (2010). Will NoSQL databases live up to their promise?. IEEE Computer Society, [pp.12 – 14].

[16]Li, Y., Manoharan, S (2013). A performance comparison of SQL and NoSQL databases. In Communications, computers and

signal processing [PACRIM], 2013 IEEE pacific rim conference on [pp. 15-19]. IEEE.

[17]Maenhaut, P. J., Moens, H., Ongenae, V., & De Turck, F. (2015). Design and evaluation of a hierarchical multi- tenant data

management framework for cloud applications. 2015 IFIP/IEEE International Symposium on Integrated Network Management

[IM]. [pp. 1208-1213].

[18]Mehar, D., Vishwakarma, G., & Jain, Y. K. (2015). Modified Fine-grained Data Access Control Algorithms for File Storage

Cloud. International Journal of Computer Applications [online], 116[22].

[19]Mell, P., & Grance, T. (2011). The NIST definition of cloud computing, [pp. 1 – 3

[20]Mietzner, R., Unger, T., Titze, R., & Leymann, F. (2009). Combining different multi-tenancy patterns in service- oriented

applications. In Enterprise Distributed Object Computing Conference. EDOC'09. IEEE International [pp. 131-140]. IEEE.

[21]Nagarajan. B., and Jayapal S., (2015). A Virtual Scaffold for Storage Multi-Tenant SaaS Data Models. International Journal of

Applied Engineering Research, 10[20], 40775- 40780.

[22]Nagarajan. B., and Suguna, J., (2016). Rumination on Scaffold Pattern Language for Multi-Tenant SaaS Application

Development. International Journal of Control Theory and Applications. Volume 9 [16], pp. 8257 – 8265.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2006246 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1695

[23]Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., & Rinaldi, B. (2011). YCSB++: benchmarking and

performance debugging advanced features in scalable table stores. In Proceedings of the 2nd ACM Symposium on Cloud

Computing [p. 9]. ACM.

[24]Smith, W. D., & Sebastian, S., (2013). Virtualization performance insights from TPC-VMS. Transaction Processing

Performance Council,[pp. 1 – 13].

[25]Yang, M., & Zhou, H. (2015). New Solution for Isolation of Multi-tenant in cloud computing. In proceeding of 3rd International

Conference on Mechatronics, Robotics and Automation [ICMRA 2015], [pp. 334 – 337].

[26] TPC BENCHMARK ™ E (2015), Standard Specification, Version 1.14.0, [pp. 1 – 287].

B Nagarajan completed his Bachelors of Science in Computer Science from Sri Sankara Arts and Science

College, Kanchipuram, India in 1995. He has completed his Master of Computer Applications (MCA) from

Arunai Engineering College, Tiruvannamalai, India in 1998 and his Master of Philosophy in Computer

Science from Bharathiar University in 2006. He is presently a Ph.D., Research Scholar (Part-Time, category

B), Department of Information Technology, Bharathiar University, Coimbatore, India and has recently

submitted his thesis. His research interest is CLOUD architecture and specific to Cloud Multi-tenant

databases and security

http://www.jetir.org/

